Search results for " SVEP"
showing 10 items of 10 documents
Some perturbation results through localized SVEP
2016
Some classical perturbation results on Fredholm theory are proved and extended by using the stability of the localized single-valued extension property under Riesz commuting perturbations. In the last part, we give some results concerning the stability of property (gR) and property (gb.
Property (w) and perturbations
2007
A bounded linear operator T ∈ L(X) defined on a Banach space X satisfies property (w), a variant of Weyl’s theorem, if the complement in the approximate point spectrum σa(T ) of the Weyl essential approximate spectrum σwa(T ) coincides with the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent operators commuting with T .
Variations on Weyl's theorem
2006
AbstractIn this note we study the property (w), a variant of Weyl's theorem introduced by Rakočević, by means of the localized single-valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property (w) holds. We also relate this property with Weyl's theorem and with another variant of it, a-Weyl's theorem. We show that Weyl's theorem, a-Weyl's theorem and property (w) for T (respectively T*) coincide whenever T* (respectively T) satisfies SVEP. As a consequence of these results, we obtain that several classes of commonly considered operators have property (w).
Weyl-Type Theorems on Banach Spaces Under Compact Perturbations
2018
In this paper, we study Browder-type and Weyl-type theorems for operators $$T+K$$ defined on a Banach space X, where K is (a non necessarily commuting) compact operator on X. In the last part, the theory is exemplified in the case of isometries, analytic Toeplitz operators, semi-shift operators, and weighted right shifts.
Projections and isolated points of parts of the spectrum
2018
In this paper, we relate the existence of certain projections, commuting with a bounded linear operator $T\in L(X)$ acting on Banach space $X$, with the generalized Kato decomposition of $T$. We also relate the existence of these projections with some properties of the quasi-nilpotent part $H_0(T)$ and the analytic core $K(T)$. Further results are given for the isolated points of some parts of the spectrum.
Local spectral theory for Drazin invertible operators
2016
Abstract In this paper we investigate the transmission of some local spectral properties from a bounded linear operator R, as SVEP, Dunford property (C), and property (β), to its Drazin inverse S, when this does exist.
Property (gR) and perturbations
2012
Property (gR) holds for a bounded linear operator T defined on a complex Banach space X, the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points c of the approximate point spectrum such cI -T is upper semi B-Browder. In this paper we consider the permanence of this property under nilpotent, perturbations commuting with T.
SVEP and local spectral radius formula for unbounded operators
2014
In this paper we study the localized single valued extension property for an unbounded operator T. Moreover, we provide sufficient conditions for which the formula of the local spectral radius holds for these operators.
Weyl Type Theorems for Left and Right Polaroid Operators
2010
A bounded operator defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. In this paper we consider the two related notions of left and right polaroid, and explore them together with the condition of being a-polaroid. Moreover, the equivalences of Weyl type theorems and generalized Weyl type theorems are investigated for left and a-polaroid operators. As a consequence, we obtain a general framework which allows us to derive in a unified way many recent results, concerning Weyl type theorems (generalized or not) for important classes of operators.
Property (w) and perturbations II
2008
AbstractThis note is a continuation of a previous article [P. Aiena, M.T. Biondi, Property (w) and perturbations, J. Math. Anal. Appl. 336 (2007) 683–692] concerning the stability of property (w), a variant of Weyl's theorem, for a bounded operator T acting on a Banach space, under finite-dimensional perturbations K commuting with T. A counterexample shows that property (w) in general is not preserved under finite-dimensional perturbations commuting with T, also under the assumption that T is a-isoloid.