Search results for " SVEP"

showing 10 items of 10 documents

Some perturbation results through localized SVEP

2016

Some classical perturbation results on Fredholm theory are proved and extended by using the stability of the localized single-valued extension property under Riesz commuting perturbations. In the last part, we give some results concerning the stability of property (gR) and property (gb.

Applied Mathematics010102 general mathematicsAnalysiPerturbation (astronomy)Property (gR) and property (Gb)Operators with topological uniform descent01 natural sciences010101 applied mathematicsSettore MAT/05 - Analisi MatematicaLocalized svep0101 mathematicsRiesz operatorAnalysisMathematicsMathematical physicsActa Scientiarum Mathematicarum
researchProduct

Property (w) and perturbations

2007

A bounded linear operator T ∈ L(X) defined on a Banach space X satisfies property (w), a variant of Weyl’s theorem, if the complement in the approximate point spectrum σa(T ) of the Weyl essential approximate spectrum σwa(T ) coincides with the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent operators commuting with T .

Discrete mathematicsPure mathematicsApproximation propertyLocalized SVEP Weyl's theorems Browder's theorems PropertyApplied MathematicsBanach spaceFinite-rank operatorCompact operatorStrictly singular operatorBounded operatorSettore MAT/05 - Analisi MatematicaBounded inverse theoremC0-semigroupAnalysisMathematics
researchProduct

Variations on Weyl's theorem

2006

AbstractIn this note we study the property (w), a variant of Weyl's theorem introduced by Rakočević, by means of the localized single-valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property (w) holds. We also relate this property with Weyl's theorem and with another variant of it, a-Weyl's theorem. We show that Weyl's theorem, a-Weyl's theorem and property (w) for T (respectively T*) coincide whenever T* (respectively T) satisfies SVEP. As a consequence of these results, we obtain that several classes of commonly considered operators have property (w).

Intersection theoremDiscrete mathematicsWeyl's theoremsPure mathematicsPicard–Lindelöf theoremProperty (w)Applied MathematicsLeast-upper-bound propertyBanach spaceLocalized SVEPBounded operatorDanskin's theoremBrowder's theoremsMathematics::Representation TheoryBrouwer fixed-point theoremBounded inverse theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Weyl-Type Theorems on Banach Spaces Under Compact Perturbations

2018

In this paper, we study Browder-type and Weyl-type theorems for operators $$T+K$$ defined on a Banach space X, where K is (a non necessarily commuting) compact operator on X. In the last part, the theory is exemplified in the case of isometries, analytic Toeplitz operators, semi-shift operators, and weighted right shifts.

Mathematics::Functional AnalysisPure mathematicsGeneral Mathematics010102 general mathematicsBrowder-type theorems and Weyl-type theoremBanach spaceType (model theory)Compact operator01 natural sciencesToeplitz matrix010101 applied mathematicslocalized SVEPSettore MAT/05 - Analisi MatematicaMathematics (all)0101 mathematicsMathematics
researchProduct

Projections and isolated points of parts of the spectrum

2018

‎‎In this paper‎, ‎we relate the existence of certain projections‎, ‎commuting with a bounded linear operator $T\in L(X)$ acting on Banach space $X$‎, ‎with the generalized Kato decomposition of $T$‎. ‎We also relate the existence of these projections with some properties of the quasi-nilpotent part $H_0(T)$ and the analytic core $K(T)$‎. ‎Further results are given for the isolated points of some parts of the spectrum‎.

PhysicsPure mathematics47A11‎Algebra and Number Theory‎localized SVEP‎‎spectrum‎47A53‎Spectrum (functional analysis)Banach spaceLocalized SVEPKato decompositionBounded operator47A10SpectrumCore (graph theory)Decomposition (computer science)‎47A55Analysis
researchProduct

Local spectral theory for Drazin invertible operators

2016

Abstract In this paper we investigate the transmission of some local spectral properties from a bounded linear operator R, as SVEP, Dunford property (C), and property (β), to its Drazin inverse S, when this does exist.

Property (philosophy)Spectral theoryApplied MathematicsMathematics::Rings and Algebras010102 general mathematicsSpectral propertiesDrazin inverse01 natural sciencesBounded operatorlaw.invention010101 applied mathematicsAlgebraInvertible matrixTransmission (telecommunications)lawSettore MAT/05 - Analisi MatematicaDrazin invertible operators local spectral subspaces SVEP Dunford’s property (C) and Bishop’s property (β).0101 mathematicsAnalysisMathematics
researchProduct

Property (gR) and perturbations

2012

Property (gR) holds for a bounded linear operator T defined on a complex Banach space X, the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points c of the approximate point spectrum such cI -T is upper semi B-Browder. In this paper we consider the permanence of this property under nilpotent, perturbations commuting with T.

Settore MAT/05 - Analisi MatematicaProperty (gR) SVEPApplied MathematicsAnalysisActa Scientiarum Mathematicarum
researchProduct

SVEP and local spectral radius formula for unbounded operators

2014

In this paper we study the localized single valued extension property for an unbounded operator T. Moreover, we provide sufficient conditions for which the formula of the local spectral radius holds for these operators.

Spectral radiusSettore MAT/05 - Analisi MatematicaGeneral MathematicsMathematical analysisLocalized SVEP local spectral radius formulaMathematics
researchProduct

Weyl Type Theorems for Left and Right Polaroid Operators

2010

A bounded operator defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. In this paper we consider the two related notions of left and right polaroid, and explore them together with the condition of being a-polaroid. Moreover, the equivalences of Weyl type theorems and generalized Weyl type theorems are investigated for left and a-polaroid operators. As a consequence, we obtain a general framework which allows us to derive in a unified way many recent results, concerning Weyl type theorems (generalized or not) for important classes of operators.

Teoremi di Weyl operatori polaroidi SVEPLeft and rightPure mathematicsAlgebra and Number TheorySpectrum (functional analysis)Banach spaceType (model theory)Bounded operatorAlgebraIsolated pointSettore MAT/05 - Analisi MatematicaAnalysisResolventMathematicsIntegral Equations and Operator Theory
researchProduct

Property (w) and perturbations II

2008

AbstractThis note is a continuation of a previous article [P. Aiena, M.T. Biondi, Property (w) and perturbations, J. Math. Anal. Appl. 336 (2007) 683–692] concerning the stability of property (w), a variant of Weyl's theorem, for a bounded operator T acting on a Banach space, under finite-dimensional perturbations K commuting with T. A counterexample shows that property (w) in general is not preserved under finite-dimensional perturbations commuting with T, also under the assumption that T is a-isoloid.

Weyl's theoremsLocalized SVEP Weyl's theorems Browder's theorems Property (w)Property (w)Applied MathematicsLocalized SVEPBrowder's theoremsAnalysis
researchProduct